v85x 平台包括了 V853, V853s, V851s, V851ses后缀代表芯片内封了DDR内存,e后缀代表芯片内封 ephy。拥有 Cortex-A7 core@900MHz, RISC-V@600MHz 和一个 0.5TOPS(VIP9000PICO_PID0XEE, 567MACS, 576 x 348M x 2 ≈ 500GOPS) 的 NPU。其中的 RISC-V 小核心为 平头哥玄铁E907

E907 平台

玄铁E907 是一款完全可综合的高端 MCU 处理器。它兼容 RV32IMAC 指令集,提供可观的整型性能提升以及高能效的浮点性能。E907 的主要特性包括:单双精度浮点单元,以及快速中断响应。

img

在V85x平台中使用的E907为RV32IMAC,不包括 P 指令集。

V85x 平台框图

V851s

image-20230215121222899

芯片架构图

image-20230215122305111

相关内存分布

image-20230215122626778

image-20230215122648192

E907 子系统框图

image-20230215122832524

具体的寄存器配置项这里就不过多介绍了,具体可以参考数据手册《V851S&V851SE_Datasheet_V1.0.pdf

V853 的异构系统通讯在硬件上使用的是 MSGBOX,在软件层面上使用的是 AMP 与 RPMsg 通讯协议。其中 A7 上基于 Linux 标准的 RPMsg 驱动框架,E907基于 OpenAMP 异构通信框架。

AMP 与 RPMsg

V853 所带有的 A7 主核心与 E907 辅助核心是完全不同的两个核心,为了最大限度的发挥他们的性能,协同完成某一任务,所以在不同的核心上面运行的系统也各不相同。这些不同架构的核心以及他们上面所运行的软件组合在一起,就成了 AMP 系统 (Asymmetric Multiprocessing System, 异构多处理系统)。

由于两个核心存在的目的是协同的处理,因此在异构多处理系统中往往会形成 Master - Remote 结构。主核心启动后启动从核心。当两个核心上的系统都启动完成后,他们之间就通过 IPC(Inter Processor Communication)方式进行通信,而 RPMsg 就是 IPC 中的一种。

在AMP系统中,两个核心通过共享内存的方式进行通信。两个核心通过 AMP 中断来传递讯息。内存的管理由主核负责。

image-20220704155816774

软件适配

这部分使用BSP开发包即可,配置设备树如下:

reserved-memory {                               // 配置预留内存区间
	e907_dram: riscv_memserve {                 // riscv 核心使用的内存
		reg = <0x0 0x43c00000 0x0 0x00400000>;  // 起始地址 0x43c00000 长度 4MB
		no-map;
	};

	vdev0buffer: vdev0buffer@0x43000000 {       // vdev设备buffer预留内存
		compatible = "shared-dma-pool";
		reg = <0x0 0x43000000 0x0 0x40000>;
		no-map;
	};

	vdev0vring0: vdev0vring0@0x43040000 {       // 通讯使用的vring设备0
		reg = <0x0 0x43040000 0x0 0x20000>;
		no-map;
	};

	vdev0vring1: vdev0vring1@0x43060000 {       // 通讯使用的vring设备1
		reg = <0x0 0x43060000 0x0 0x20000>;
		no-map;
	};
};

e907_rproc: e907_rproc@0 {                      // rproc相关配置
	compatible = "allwinner,sun8iw21p1-e907-rproc";
	clock-frequency = <600000000>;
	memory-region = <&e907_dram>, <&vdev0buffer>,
				<&vdev0vring0>, <&vdev0vring1>;

	mboxes = <&msgbox 0>;
	mbox-names = "mbox-chan";
	iommus = <&mmu_aw 5 1>;

	memory-mappings =
			/* DA 	         len         PA */
			/* DDR for e907  */
			< 0x43c00000 0x00400000 0x43c00000 >;
	core-name = "sun8iw21p1-e907";
	firmware-name = "melis-elf";
	status = "okay";
};

rpbuf_controller0: rpbuf_controller@0 {        // rpbuf配置
	compatible = "allwinner,rpbuf-controller";
	remoteproc = <&e907_rproc>;
	ctrl_id = <0>;	/* index of /dev/rpbuf_ctrl */
	iommus = <&mmu_aw 5 1>;
	status = "okay";
};

rpbuf_sample: rpbuf_sample@0 {
	compatible = "allwinner,rpbuf-sample";
	rpbuf = <&rpbuf_controller0>;
	status = "okay";
};

msgbox: msgbox@3003000 {                       // msgbox配置
	compatible = "allwinner,sunxi-msgbox";
	#mbox-cells = <1>;
	reg = <0x0 0x03003000 0x0 0x1000>,
		<0x0 0x06020000 0x0 0x1000>;
	interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
				<GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
	clocks = <&clk_msgbox0>;
	clock-names = "msgbox0";
	local_id = <0>;
	status = "okay";
};

e907_standby: e907_standby@0 {
	compatible = "allwinner,sunxi-e907-standby";

	firmware = "riscv.fex";
	mboxes = <&msgbox 1>;
	mbox-names = "mbox-chan";
	power-domains = <&pd V853_PD_E907>;
	status = "okay";
};

内存划分

在设备树配置小核心使用的内存,包括小核自己使用的内存,设备通信内存,回环内存等等,这里E907 运行在 DRAM 内。内存起始地址可以在数据手册查到。

image-20230215131405440

通常来说我们把内存地址设置到末尾,例如这里使用的 V851s,拥有 64MByte 内存,则内存范围为 0x40000000 - 0x44000000,这里配置到 0x43c00000 即可。对于 V853s 拥有 128M 内存则可以设置到 0x47C00000,以此类推。对于交换区内存则可以配置在附近。

reserved-memory {                               // 配置预留内存区间
	e907_dram: riscv_memserve {                 // riscv 核心使用的内存
		reg = <0x0 0x43c00000 0x0 0x00400000>;  // 起始地址 0x43c00000 长度 4MB
		no-map;
	};

	vdev0buffer: vdev0buffer@0x43000000 {       // vdev设备buffer预留内存
		compatible = "shared-dma-pool";
		reg = <0x0 0x43000000 0x0 0x40000>;
		no-map;
	};

	vdev0vring0: vdev0vring0@0x43040000 {       // 通讯使用的vring设备0
		reg = <0x0 0x43040000 0x0 0x20000>;
		no-map;
	};

	vdev0vring1: vdev0vring1@0x43060000 {       // 通讯使用的vring设备1
		reg = <0x0 0x43060000 0x0 0x20000>;
		no-map;
	};
};

然后需要配置下 e907 的链接脚本,找到 e907_rtos/rtos/source/projects/v851-e907-lizard/kernel.ldsORIGIN 配置为上面预留的内存。

MEMORY
{
   /*DRAM_KERNEL: 4M */
   DRAM_SEG_KRN (rwx) : ORIGIN = 0x43c00000, LENGTH = 0x00400000
}

然后配置小核的 defconfig 位于 e907_rtos/rtos/source/projects/v851-e907-lizard/configs/defconfig 配置与其对应即可。

CONFIG_DRAM_PHYBASE=0x43c00000
CONFIG_DRAM_VIRTBASE=0x43c00000
CONFIG_DRAM_SIZE=0x0400000

配置启动小核

配置启动小核的流程如下,这里只讨论使用 linux 启动小核的情况,不讨论快启相关。

img

  1. 加载固件
    1. 调用 firmware 接口获取文件系统中的固件
    2. 解析固件的 resource_table 段,该段有如下内容
      1. 声明需要的内存(Linux 为其分配,设备树配置)
      2. 声明使用的 vdev(固定为一个)
      3. 声明使用的 vring(固定为两个)
    3. 将固件加载到指定地址
  2. 注册 rpmsg virtio 设备
    1. 提供 vdev->ops(基于 virtio 接口实现的)
    2. rpmsg_bus 驱动匹配,完成 rpmsg 初始化
  3. 启动小核
    1. 调用 rproc->ops->start

1. 加载固件

驱动位于 kernel/linux-4.9/drivers/remoteproc/sunxi_rproc_firmware.c

首先调用 sunxi_request_firmware 函数

int sunxi_request_firmware(const struct firmware **fw, const char *name, struct device *dev)
{
	int ret, index;
	struct firmware *fw_p = NULL;
	u32 img_addr, img_len;

	ret = sunxi_find_firmware_storage();
	if (ret < 0) {
		dev_warn(dev, "Can't finded boot_package head\n");
		return -ENODEV;
	}

	index = ret;

	ret = sunxi_firmware_get_info(dev, index, name, &img_addr, &img_len);
	if (ret < 0) {
		dev_warn(dev, "failed to read boot_package item\n");
		ret = -EFAULT;
		goto out;
	}

	ret = sunxi_firmware_get_data(dev, index, img_addr, img_len, &fw_p);
	if (ret < 0) {
		dev_err(dev, "failed to read Firmware\n");
		ret = -ENOMEM;
		goto out;
	}

	*fw = fw_p;
out:
	return ret;
}

驱动会从固件的特定位置读取,使用函数 sunxi_find_firmware_storage,这里会去固定的位置查找固件,位置包括 lib/firmware/dev/mtd0. /dev/mtd1, /dev/mmcblk0 等位置。对于Linux启动我们只需要放置于 lib/firmware 即可。

static int sunxi_find_firmware_storage(void)
{
	struct firmware_head_info *head;
	int i, len, ret;
	loff_t pos;
	const char *path;
	u32 flag;

	len = sizeof(*head);
	head = kmalloc(len, GFP_KERNEL);
	if (!head)
		return -ENOMEM;

	ret = sunxi_get_storage_type();

	for (i = 0; i < ARRAY_SIZE(firmware_storages); i++) {
		path = firmware_storages[i].path;
		pos = firmware_storages[i].head_off;
		flag = firmware_storages[i].flag;

		if (flag != ret)
			continue;

		pr_debug("try to open %s\n", path);

		ret = sunxi_firmware_read(path, head, len, &pos, flag);
		if (ret < 0)
			pr_err("open %s failed,ret=%d\n", path, ret);

		if (ret != len)
			continue;

		if (head->magic == FIRMWARE_MAGIC) {
			kfree(head);
			return i;
		}
	}

	kfree(head);

	return -ENODEV;
}

2. 配置时钟

配置clk与小核的 boot 选项,驱动位于kernel/linux-4.9/drivers/remoteproc/sunxi_rproc_boot.c 可以自行参考

struct sunxi_core *sunxi_remote_core_find(const char *name);

int sunxi_core_init(struct sunxi_core *core);

void sunxi_core_deinit(struct sunxi_core *core);

int sunxi_core_start(struct sunxi_core *core);

int sunxi_core_is_start(struct sunxi_core *core);

int sunxi_core_stop(struct sunxi_core *core);

void sunxi_core_set_start_addr(struct sunxi_core *core, u32 addr);

void sunxi_core_set_freq(struct sunxi_core *core, u32 freq);

使用 debugfs 加载固件

由于已经对外注册了接口,这里只需要使用命令即可启动小核心。假设小核的elf名字叫e907.elf 并且已经放置进 lib/firmware 文件夹

echo e907.elf > /sys/kernel/debug/remoteproc/remoteproc0/firmware
echo start > /sys/kernel/debug/remoteproc/remoteproc0/state

E907 小核开发

这里提供了一个 RTOS 以供开发使用,此 RTOS 基于 RTT 内核。地址 https://github.com/YuzukiHD/Yuzukilizard/tree/master/Software/BSP/e907_rtos

同时,docker 镜像内也已包含此开发包,可以直接使用。

搭建开发环境

使用 docker

直接拉取 gloomyghost/yuzukilizard 即可

 docker pull gloomyghost/yuzukilizard

image-20230215133501502

独立搭建开发环境

使用 git 命令下载(不可以直接到 Github 下载 zip,会破坏超链接与文件属性)

git clone --depth=1 https://github.com/YuzukiHD/Yuzukilizard.git

image-20230215133017293

然后复制到当前目录下

 cp -rf Yuzukilizard/Software/BSP/e907_rtos/ . && cd e907_rtos

下载编译工具链到指定目录

cd rtos/tools/xcompiler/on_linux/compiler/ && wget https://github.com/YuzukiHD/Yuzukilizard/releases/download/Compiler.0.0.1/riscv64-elf-x86_64-20201104.tar.gz && cd -

image-20230215133709126

编译第一个 elf 系统

进入 rtos/source 文件夹

cd rtos/source/

image-20230215133820910

应用环境变量并加载方案

source melis-env.sh;lunch

image-20230215133922058

然后直接编译即可,他会自动解压配置工具链。编译完成后可以在 ekernel/melis30.elf 找到固件。

make -j

image-20230215134015333

配置小核系统

小核的编译框架与 kernel 类似,使用 kconfig 作为配置项。使用 make menuconfig 进入配置页。

image-20230215134155560

其余使用与标准 menuconfig 相同这里不过多赘述。

小核使用

小核使用 UART 输出 console

首先配置小核的 PINMUX 编辑文件 e907_rtos/rtos/source/projects/v851-e907-lizard/configs/sys_config.fex 这里使用 UART3 , 引脚为PE12, PE13 , mux 为 7

[uart3]
uart_tx         = port:PE12<7><1><default><default>
uart_rx         = port:PE13<7><1><default><default>

然后配置使用 uart3 作为输出,运行 make menuconfig 居进入配置

 Kernel Setup  --->
 	Drivers Setup  --->
 		Melis Source Support  --->
 			[*] Support Serial Driver
 		SoC HAL Drivers  --->
 			Common Option  --->
 				[*] enable sysconfig                // 启用读取解析 sys_config.fex 功能
 			UART Devices  --->
 				[*] enable uart driver              // 启用驱动
 				[*]   support uart3 device          // 使用 uart3
 				(3)   cli uart port number          // cli 配置到 uart3
 Subsystem support  --->
 	devicetree support  --->
 		[*] support traditional fex configuration method parser. // 启用 sys_config.fex 解析器

linux 中配置设备树,将设备树配置相应的引脚与 mux

2

如果设备树不做配置引脚和 mux,kernel会很贴心的帮你把没使用的 Pin 设置 io_disable 。由于使用的是 iommu 操作 UART 设备,会导致 io 不可使用。如下所示。

4BBXHRX_1T@MH7K}{4TXNKY

222

此外,还需要将 uart3 的节点配置 disable,否则 kernel 会优先占用此设备。

&uart3 {
        pinctrl-names = "default", "sleep";
        pinctrl-0 = <&uart3_pins_active>;
        pinctrl-1 = <&uart3_pins_sleep>;
        status = "disabled";
};

如果配置 okay 会出现以下提示。

uart: create mailbox fail
uart: irq for uart3 already enabled
uart: create mailbox fail

启动小核固件后就可以看到输出了

image-20230215131216802

核心通讯

建立通讯节点

启动小核后,使用 eptdev_bind test 2 建立两个通讯节点的监听,可以用 rpmsg_list_listen 命令查看监听节点。

image-20230215135619996

然后在 Linux 内创建通讯节点,由于我们上面启用了两个监听所以这里也开两个节点

echo test > /sys/class/rpmsg/rpmsg_ctrl0/open
echo test > /sys/class/rpmsg/rpmsg_ctrl0/open

image-20230215135802471

然后就可以在 /dev/ 下看到通讯节点 /dev/rpmsg0/dev/rpmsg1

image-20230215135907700

也可以在小核控制台看到节点的建立

image-20230215140011440

核心通讯

Linux -> e907

可以直接操作 Linux 端的节点,使用 echo 写入数据

echo "Linux Message 0" > /dev/rpmsg0
echo "Linux Message 0" > /dev/rpmsg1

image-20230215140146824

小核即可收到数据

image-20230215140239518

e907 -> Linux

使用命令 eptdev_send 用法 eptdev_send <id> <data>

eptdev_send 0 "E907 Message"
eptdev_send 1 "E907 Message"

image-20230215140457024

在 Linux 侧直接可以读取出来

cat /dev/rpmsg0
cat /dev/rpmsg1

image-20230215140548983

可以一直监听,例如多次发送数据

image-20230215140641612

Linux 侧获得的数据也会增加

image-20230215140704356

关闭通讯

Linux 侧关闭,操作控制节点,echo <id> 给节点即可

echo 0 > /sys/class/rpmsg/rpmsg_ctrl0/close
echo 1 > /sys/class/rpmsg/rpmsg_ctrl0/close

image-20230215140946705

同时 E907 也会打印链接关闭

image-20230215140935523

rpmsg 需知

  1. 端点是 rpmsg 通信的基础;每个端点都有自己的 srcdst 地址,范围(1 - 1023,除了 0x35
  2. rpmsg 每次发送数据最大为512 -16 字节;(数据块大小为 512,头部占用 16 字节)
  3. rpmsg 使用 name server 机制,当 E907 创建的端点名,和 linux 注册的 rpmsg 驱动名一 样的时候,rpmsg bus 总线会调用其 probe 接口。所以如果需要 Linux 端主动发起创建端 点并通知 e907,则需要借助上面提到的 rpmsg_ctrl 驱动。
  4. rpmsg 是串行调用回调的,故建议 rpmsg_driver 的回调中不要调用耗时长的函数,避免影 响其他 rpmsg 驱动的运行

自定义小核 APP

小核的程序入口位于 e907_rtos/rtos/source/projects/v851-e907-lizard/src/main.c

#include <stdio.h>
#include <openamp/sunxi_helper/openamp.h>

int app_entry(void *param)
{
    return 0;
}

可以自定义小核所运行的程序。

自定义小核命令

SDK 提供了 FINSH_FUNCTION_EXPORT_ALIAS 绑定方法,具体为

FINSH_FUNCTION_EXPORT_ALIAS(<函数名称>, <命令>, <命令的描述>)

例如编写一个 hello 命令,功能是输出 Hello World,描述为 Show Hello World

int hello_cmd(int argc, const char **argv)
{
    printf("Hello World\n");
}
FINSH_FUNCTION_EXPORT_ALIAS(hello_cmd, hello, Show Hello World)

即可在小核找到命令与输出。

image-20230215142007978